奈米壓痕技術與應用

張瑞慶 聖約翰科技大學機械系 教授

摘要

就奈米尺度的微小結構而言,不論是各種的微機電系統、以化學氣相沉積所製成的 各種結構、以物理蒸鍍、或是濺鍍所製成的薄膜等,奈米壓痕技術提供了有效量測機械 性質的方法。本文簡介奈米壓痕技術,包括基本原理介紹、實驗數據分析、實驗必須注 意的校正工作、以及討論影響實驗準確性的各種因素。其次介紹奈米壓痕的進階應用, 包括如何利用刮痕技術來量測磨耗性質、以機械動態法分析材料的黏彈性質、如何應用 奈米壓痕技術量測破裂韌性、連續勁度量測技術、溫度控制模組、以及各種探針的介紹 等。最後列出兩種較具代表性奈米壓痕儀的使用者名單,以供參考。

一.前言

微小化為廿一世紀的科技主流,其中奈米技術(nanotechnology)已成為學術界及產業 界新寵,各到廣泛的重視。奈米技術可應用於分子電子學、生物化學、觸媒、基因組與 醫學、有機化學、高分子化學、物理化學及感應器等領域,全球奈米材料市場涵蓋電子、 磁學及光電,生醫、醫藥及化妝品、能源、觸媒及結構體,以目前的發展估算,在未來 的十年內將帶來百億美元以上的商機。

不過科學家早在一世紀前就漸漸進入奈米尺度的世界,許多的應用已相當成熟,如 膠囊和輪胎的製造等。直到今日,半導體製程早已突破奈米尺度,而應用於醫藥及新能 源的奈米技術,也不斷被提出,例如奈米碳管、燃料電池的儲氫材料、高效率照明元件、 太陽能電池,奈米磁鐵,奈米光觸媒等,都是各研究機構的重點項目。

奈米技術實際上並無統一的定義,一般說法係指物質在奈米尺寸下呈現出有別於巨 觀尺度下的物理、化學或生物特性與現象。所謂奈米科技便是運用這方面的知識,在奈 米尺寸等級的微小世界中操作、控制原子或分子組合成新的奈米尺度結構,以便展現新 的機能與特性。以此為基礎,設計、製作、組裝成新的奈米材料、器具或系統,產生全 新功能,並加以利用的技術總稱。奈米技術的最終目標是依照需求,透過控制原子、分 子在奈米尺度上表現出來的嶄新特性,加以組合並製造出具有特定功能的產品。而材料 尺度由微米到奈米所代表的意義並不只是尺寸的縮小,同時,新而獨特的物質特性亦隨 之出現。在奈米的領域下,許多物質的現象都將改變,例如材料使用減少、表面積增高、 表面曲度變大、熱導度或導電性也明顯變高等等,因此也就衍生了許多新的應用。

至於奈米結構的機械性質試驗,不論是各種的微機電系統、以化學氣相沉積所製成 的各種結構、以物理蒸鍍或是濺鍍所製成的薄膜等,都需要量測出各種結構的機械性 質,以作為製程的參考,奈米壓痕技術提供了有效的量測方法。

壓痕法因為使用的方便和快速,已成為最常用來量測材料機械性質的技術,在本世 紀初,壓痕法首先由 Brinell 提出,其利用軸承的鋼珠作為壓痕儀來量測材料的塑性性質 [1,2],勃氏試驗(Brinell test)很快被工業界引用,並且快速應用於各種巨觀和微觀的壓痕 試驗[3]。傳統壓痕試驗必須以光學方式量測壓痕的尺寸,使得壓痕法在尺度上有所限 制。近 20 年來,由於力量控制和精密位移量測的快速發展,在新近的系統中,力量已 經可以控制到奈牛頓(nN),且位移也可以精密量測到 0.1 奈米(nm),也促使壓痕試驗進 入到奈米尺度。

二.基本原理

壓痕試驗可以說是測試材料機械性質最常見的方法,其基本作法是用堅硬的探針以 一定的力量壓入試片表面,當力量釋放及探針移去後,會在試片表面形成壓痕,量測壓 痕的面積,將壓痕力量除以壓痕面積即一般所定義的硬度。

奈米壓痕法即根據傳統壓痕試驗而來,基本上,只要探針夠尖銳,並以精確的力量 壓入試片表面,理論上可以做到任意小的尺寸,唯一的問題就是如何正確地量測出殘留 的壓痕面積了。一個解決方法是利用高倍率的顯微鏡來進行量測,但效果不好,主要原 因是不容易在試片表面找到殘留的壓痕。另一種方法是以壓痕深度來換算壓痕面積,因 為探針的形狀已知,只要知道探針壓入試片表面的深度,即可換算成壓痕面積,也就是 只要有很精確的壓痕深度感測裝置,即可進行奈米壓痕試驗了。

以壓痕法來量測材料機械性質的理論基礎,最早可追溯到十九世紀末 Hertz 所建立 的彈性接觸理論。後來 Sneddon[4]推導出對於任何平滑曲線形狀壓痕器,其負載、位移、 以及接觸面積的關係式,對許多簡單幾何形狀的壓痕器,負載-位移關係可以指數定律 表示。奈米壓痕真正的濫觴可以說是由 Oliver and Pharr[5]開始,他們由壓痕試驗所得的 結果,印證負載-位移的對數線性關係,即以指數定律法決定初始卸載剛性,而接觸面 積則利用卸載後的接觸深度,經由壓痕器面積函數的計算而得,則可求得奈米材料或薄 膜的變形模數、彈性係數與硬度等。

目前,有許多廠商開發了多種奈米壓痕儀,圖1和圖2為典型的奈米壓痕儀結構, 圖1的結構是以電磁線圈驅動探針對試片進行壓痕動作,探針壓痕的深度再由電容片記錄,圖2為另一種結構,力量和位移由三片電容片產生和紀錄。奈米壓痕儀主要的功能 就是能精確的紀錄壓痕過程的力量和位移,且能有效克服外在環境對壓痕的干擾。

圖1 奈米壓痕儀結構(I)

圖 2 奈米壓痕儀結構(II)

圖4 奈米壓痕剖面圖

2.1 奈米壓痕解析步驟

由壓痕過程所得的負載-深度曲線,即可計算出試片的彈性係數和硬度。圖 3 為標 準的壓痕試驗的負載-深度曲線,在探針的加載過程,探針的壓入深度隨著負載力量的 增加而增加,而在卸載過程,因彈性變形逐漸恢復,探針的深度也隨之變小。圖 4 為壓 痕試驗的剖面圖,當壓痕探針壓入試片時,將造成試片表面的變形,當壓痕器卸載後, 探針離開試片表面,並在試片表面留下凹痕。以下簡介奈米壓痕試驗的解析步驟: 1.將壓痕卸載的負載-深度曲線作數值回歸,如(1)式所示,求出材料係數α和m。

$$P = \alpha (h - h_f)^m \tag{1}$$

2. 對(1)式微分,求得卸載曲線的斜率,如(2)式所示,即壓痕的勁度 S (Stiffness)。

$$S = \frac{dP}{dh} \tag{2}$$

3.如(3)式所示,計算壓痕的接觸深度h,,其中β為探針的形狀係數。

$$h_c = h_{\max} - \beta \frac{P_{\max}}{S} \tag{3}$$

4.如(4)式所示,計算試片的硬度H,其中A為探針接觸深度時的投影面積。

$$H = \frac{P_{\text{max}}}{A(h_c)} \tag{4}$$

5.計算壓痕的簡化模數 E_r (reduced modulus), 如(5)式所示。

$$E_r = \frac{\sqrt{\pi} S}{2\sqrt{A(h_c)}}$$
(5)

6.經由簡化模數 E_r 計算出試片的彈性係數 E_s,如(6)式所示,其中 E_i 為探針的彈性係數, 而 v_s、 v_i 分別為試片和試片的柏松比。

$$E_r = \frac{1 - v_s^2}{E_s} + \frac{1 - v_i^2}{E_i}$$
(6)

2.2 實驗應注意的校正

由於在奈米尺度下的檢測,儀器本身的誤差以及週遭環境對實驗結果會造成很大的

影響,一般而言,誤差的來源可分為三種:一、來自外界的干擾影響;二、儀器本身的 誤差;三、試片製作時表面出糙度。故在實驗時,必須先做好校正的工作。

1.探針面積函數校正

探針面積函數的校正為壓痕試驗最重要的步驟,也是影響實驗結果最重要的因素。 實際的鑽石探針尖端曲率半徑約為 100~200 奈米,且隨著使用時間越久,產生磨耗越 多,會造成面積函數的改變,而當尖端鈍化導致與原來形狀有所偏差時,就需要透過標 準試片定期校正,一般可使用 Oliver 和 Pharr 所提出的壓痕器校正方法,且使用熔凝石 英(fused quartz)為標準片,並假設彈性係數為一常數(72Gpa,減化模數為 69.6Gpa,硬 度約為 10Gpa,波松比為 0.17),即不隨著壓痕深度而改變。對一個幾何角錐壓痕 (Berkovich),其接觸面積的投影和接觸壓痕的深度關係為

$$A(h_c) = C_0 h_c^2 + C_2 h_c^{1/2} + C_3 h_c^{1/4} + C_4 h_c^{1/8} + C_5 h_c^{1/16}$$
(7)

若為三角錐壓痕(Berkovich)時,則其 C_0 值為24.5,但若對角度為90°之立方體壓痕其值為2.598。 $C_1 \sim C_5$ 是為了修正探針尖端誤差,使計算之正向投影面積更接近真實的壓痕面積。由不同的荷重所得到的接觸面積的投影(A)與接觸壓痕深度(h_c)代入上式,做多項式的曲線回歸(Curve fitting),面積函數即可得知。通常在實驗開始之前,以fused quartz做50~10000 μ N 共11 次的壓痕試驗,並以此數據做接觸面積函數校正。探針的尖端若是有灰塵等東西,亦會影響實驗結果,此時需以棉花棒沾酒精擦拭,或以一低彈性且軟的的材料如鋁材做壓痕實驗來除去髒東西,以保持探針之清潔,接著再做接觸面積函數的校正。一般在壓痕實驗之前及結束後都須再使用 fused quartz 標準片測試,即以標準片做壓痕測試,測其減化模數是否接近標準值,以確定實驗數據正確與否,若是誤差太大,則需重新做接觸面積函數的校正。

2. 熱漂移校正

在奈米壓痕量測系統中,造成熱漂移(thermal drift)效應的原因有兩種,一為材料塑 性流動造成的潛變效應,另一為環境的溫度與儀器本身因操作時發熱,都可能使系統的 組件產生熱膨脹,熱膨脹將在數據中被放大,成為試件中明顯的位移,造成誤差,但操 作時間越久,儀器溫度會趨於穩定,而且實驗室有空調設備,所以熱漂移現象會減少。

通常實驗儀器可在每次壓痕實驗時,在施加荷重前,可設定儀器量測熱漂移率 D_{rit},通常漂移距離與時間呈現線性的情形,故修正修正熱漂移位移公式如下

$$D = D_0 \pm D_{rift} t \tag{8}$$

其中t為經過時間,D₀為未經過熱漂移修正之位移,D為經熱漂移修正後之位移,一般 儀器都可以設定熱漂移率,若超過所預設的值則儀器不做動,以確保實驗的準確性,等 到熱漂移率低於預設值才開始實驗。如不考慮熱漂移效應,許多儀器也提供設定等待時 間,在等待時間過後才開始實驗。

3.機械撓性校正

因機器本身在做壓痕動作時,所量測到的位移量為試片以及壓痕儀本身機械結構的 變形量,而壓痕試驗後皆由壓痕深度來計算楊氏係數,所以壓痕深度值,對實驗相當重 要的,所以必須扣除機器本身的變形量以求得精確的實驗數據,故實驗前,必須先量測 出機械結構本身的撓性,再將此值設定於換能器的補償參數中,以得到更精確的實驗數 據值。

4.靜電力校正

奈米壓痕儀的荷重是由靜電力所產生,但因為致動器之中央電容板以支撐彈簧懸掛

於上下電容板間,在鑽石探針壓入的過程中,一部分的荷重會於彈簧所吸收;對於硬的 材料而言,荷重幾乎都施加於材料上,但對於軟的材料而言,一部分的荷重會為彈簧所 吸收。為了扣除彈簧力的效應,以一靜電力常數描述。

在進行靜電力常數校正過程中,必須使真正施加於材料的荷重能夠扣除彈簧效應。 靜電力常數校正過程必須在鑽石探針遠離樣品時,即中央電容板能自由移動的情況下, 施加荷重造成支撐彈簧形變。此過程稱為 Air indent。此時觀察荷重-位移曲線,若無法 完全扣除支撐彈簧的效應,會呈現線性行為(虎克定律),即斜率為正,此時需調整靜 電力常數,使得呈現水平線,即荷重不隨位移而變化。

市面上一些較大型壓痕儀器可以自動進行靜電力校正,但非常費時,以人工方式校 正可解省許多時間。

2.3 影響實驗的因素

1.黏著效應

有些材料在壓痕過程,可能會和探針黏著在一起,造成實驗的誤差。為避免探針與 試片產生黏著效應,在進行壓痕試驗時,通常會在初始時負載震盪三次,主要是為了消 除黏滯性對荷重上升時的影響,其中卸載到最大荷重的10%,當震盪完三次後保持10% 的負載,以避免系統熱膨脹影響,之後再增加荷重,在將負載位移資料記錄分析。且實 驗時量測不同區域,以避免樣品的區域效應,以及壓痕與壓痕之間的距離大於壓痕大小 的3~5 倍,以避免應變硬化。

2.尺寸效應

在作壓痕試驗時,一般都預期施以不同的荷重或壓入不同的深度會得到相同的硬度 值,但實際量測時卻發現不是如此,此即壓痕大小效應。有一些原因可解釋此現象,如 接觸面的不確定性、表面氧化層的生成所致、試片表面因加工所造成的殘留應力及應變 硬化、或是接觸面積函數的計算誤差等。Nix and Gao[6]以塑性應變硬化的理論,得到硬 度隨壓痕深度變化的特徵公式如下

$$\frac{H}{H_0} = \sqrt{1 + \frac{h^*}{h}} \tag{9}$$

其中H是指壓痕深度為h時的硬度值, H_0 是指壓痕深度無窮大時的硬度值, h^* 為與探 針幾何形狀、剪力模數及有關 H_0 之特徵長度。將 $(H/H_0)^2$ 對1/h之曲線圖畫出,其截 距即為 H_0 而斜率為 h^* 。

3.表面粗造度效應

試片的表面若是非常粗糙時,探針尖端與試片表面的接觸便不是單一的接觸,而是 多點的接觸,如圖 5 所示,由於多點接觸的面積較小,因此形成荷重所造成的位移比單 一接觸時還大的誤差,如此會使得接觸面積被高估,連帶使得到的硬度及彈性係數值變 小。若要降低表面粗糙度效應對壓痕實驗的影響,除了使試片表面更平坦,壓痕尺寸亦 或是壓痕深度相對於表面粗糙度必需非常大,很多文獻都指出表面粗糙度對實驗的影 響。根據粗糙度理論,粗糙度必須小於壓痕深度的 20 %,以避免粗糙度對材料機械性 質的影響。

4.凸起和陷入效應

使用 Oliver 和 Pharr[5]的理論作實驗,對大多數的材料來說,其精確度可達 10%, 但是做壓痕實驗時,常會發生擠出現象(pile-up)與沉陷現象(sink-in),如圖 6 所示,此兩 種現象所造成接觸的面積計算誤差,最高可達 50%。Oliver 和 Pharr 的理論是描述純彈性的接觸,其理論只包含了沉陷現象而不包含擠出現象,是由於擠出現象會使實驗時得到的接觸面積減少,導致得到錯的機械性質,但是真實的材料為彈塑性的接觸,不論擠出現象或沉陷現象都會影響實驗所得的機械性質。許多分析結果顯示,不論發生擠出現象或沉陷現象,在 $h_f / h_{max} < 0.7$ 時,影響較小, h_f 是最後壓痕的深度,而 h_{max} 為實驗中探針最大的位移,若是 $h_f / h_{max} > 0.7$,且又發生擠出現象,則實驗結果誤差較大。

三. 進階運用

3.1 奈米刮痕

相對於傳統量測材料磨耗性質的方法, 奈米結構尺度過小, 傳統的方式荷重過重、 及數據不夠精確等問題, 所以無法適用於奈米尺度之磨耗性質研究。而奈米壓痕儀可架 設 2D 雙軸向電能轉換頭, 由壓痕實驗衍伸,將原本單軸的機構改為二維方向的控制, 利用相同的控制及回饋的系統,控制水平方向單一軸(X 方向)的位移和垂直方向(Z 方向) 的施力, 可得由儀器得到垂直方向的位移和所受到的側向力。在藉由偵測連續的正向荷 重(Normal force)及側向荷重(Lateral force), 從所得到的數據, 經由計算得到磨擦係數藉 此可分析研究磨耗係數。

圖 7 奈米壓痕圖

圖 8 奈米刮痕圖

另外,在作薄膜的機械性質試驗時,刮痕試驗可以減少壓痕試驗受到基材效應的影響,可以提供更豐富的實驗數據,圖7和8分別是奈米壓痕和刮痕試驗所殘留的壓痕和 刮痕。壓痕的形狀取決於探針的形狀,一般為三角形因為標準的 Berkovich 探針為三角 錐。刮痕試驗為避免方向性,一般使用圓錐探針,若使用 Berkovich 探針則需注意其三 角錐的方向性,刮痕大小則取決於負載的大小和方式。

3.2 動態機械分析

動態機械分析(Dynamic Mechanical Analysis, DMA)技術已被大量應用於聚合物和 陶瓷業上的薄膜甚至塊材之壓痕檢測試驗,目的在於提高壓痕試驗的檢測能力,此實驗 方法是產生一個正弦曲線負載的同時產生準靜態量測負載。利用 Odegard[7]提出奈米壓 痕儀的模型如圖 9,以及根據 Findley[8]提出的推導理論計算彈性模數 E'以及黏性模數 $E'',其中 K_s為支撐的彈簧剛性, K_f為負載結構之剛性, <math>D_i$ 為壓痕器之阻尼, m 為壓痕 器阻尼, S 為接觸剛性, D_s 為接觸阻尼。

$$F(t) = m\ddot{z}(t) + (D_i + D_s)\dot{z}(t) + (K_s + S)z(t)$$
(10)

一般的黏彈性材料,可由下列簡單的式子表示:
 E = E' + iE" (11)

而

$$E' = \frac{S}{2\beta} \sqrt{\frac{\pi}{A}} \tag{12}$$

其中彈性模數(E')為 Storage modulus β 為接觸深度 A 為接觸深度面積

$$E'' = \frac{\omega D_s}{2\beta} \sqrt{\frac{\pi}{A}}$$
(13)

其中黏性模數(E'')為 Loss modulus,而 ωD_s 從上式取得。

3.3 破裂韌性量測

壓痕過程所紀錄的負載-深度曲線提供了豐富的資訊,我們可以直接由負載-深度曲線得到材料的壓痕硬度和彈性係數,而不用量測壓痕的形狀。而且,不同於傳統的壓痕 試驗,奈米壓痕儀同時可用來量測薄膜的破裂韌性(fracture toughness)[9-11]。如圖 11 所 示,當壓痕過程中有裂縫發生,其在負載-深度曲線所造成變化,計算該區域的面積, 即為裂縫破裂所釋放的能量,可藉此反算破裂韌性。

另一種作法與使用硬度試驗機量測破裂韌性的方法相同,先用奈米壓痕器壓出裂 痕,量取裂痕的總長度,再帶入傳統破壞力學的公式求得破裂韌性,較適合脆性的材料。

3.4 連續勁度量測

連續勁度量測(continuous stiffness measurement)的方法,是在奈米壓痕的加載過程 中,增加簡諧振盪的力量,並連續量測壓痕的接觸勁度,而求得接觸勁度為壓痕深度的 函數,其作法與前述動態機械分析類似,只是一般作動態機械分析時,只用交流的簡諧 振盪的力量,不用直流的線性加載。

3.5 溫度效應

有些奈米壓痕儀廠商提供控制溫度的模組,可對試片進行加熱或冷卻的動作,以進 行不同溫度的奈米壓痕試驗,這對溫度敏感的材料,例如高分子材料,或是記憶合金等, 可提供較豐富的實驗數據,但是實驗時需使用專用的高溫探針,以免高溫造成儀器的損 壞。另外,必須控制好熱漂移校正,以維持實驗的準確性。

3.6 不同探針形式

奈米壓痕試驗通常使用 Berkovich 標準探針,如圖 11 所示,其尖端為鑽石,為三角 錐的形式,其全角為 142.3 度,半角為 65.3 度,曲率半徑約為 100~200 奈米之間。對於 特殊的試驗,例如較軟或較硬的材料,或是極薄的薄膜等,亦可使用不同的探針,圖 12 為一圓錐形探針,有多種的圓錐角和曲率半徑可供選擇,亦有廠商提供傳統硬度試驗用 的 Vickers 和 Knoop 探針。探針價格不便宜,如果操作不當,很容易造成探針損壞,將 造成試驗很大的誤差。

圖 11 Berkovich 標準探針

圖 12 Conical 探針

四.結語

奈米技術為目前很熱門的領域,不斷的製造出各種的奈米結構,而奈米壓痕儀則提供了測試這些微結構的機械性質的方法,國內已有不少專家學者進行相關的研究,表1 和表2是兩家比較有代表性的奈米壓痕儀的使用者名單。

但是, 奈米壓痕試驗需要進行很精密的量測, 因此需要技術純熟的操作人員, 尤其 各項校正工作更須小心操作, 才能確保實驗數據的正確。

隨著結構的尺寸愈來愈小,值得關心的是,材料在尺度變小時其機械性質是否改變?化學氣相沉積和物理氣相沉積所製成的微結構,哪種機械性質較好?以蒸鍍或濺鍍 製成的薄膜,其機械性質是否與塊材相同?200 奈米薄膜的機械性質是否和 100 奈米薄 膜相同?與 50 奈米或更小的薄膜比較呢?奈米壓痕技術提供了一種探討這些有趣問題 的工具。

	表	1	MTS	奈米	壓痕	儀使	用者	名	單
--	---	---	-----	----	----	----	----	---	---

機構名稱	單位名稱
工研院	奈米中心
清華大學	動機系(中部微機電中心)
成功大學	南部微機電-MEMS 中心
交通大學	國家毫微米中心
中山大學	

(國科公司提供)

表 2 Hysitron 奈米壓痕儀使用者名單

機構名稱	單位名稱
工研院	機械所
工研院	量測中心
中正大學	機械系
台積電	RD
成功大學	材料系
成功大學	機械系
東南技術學院	機械系
南台科技大學	機械系
屏東科技大學	材料系
清華大學	材料系(貴儀中心)
清華大學	工程科學系
聖約翰科技大學	機械系
交通大學	材料系
(引收入习旧儿)	

(科榮公司提供)

參考文獻

- [1] Tabor, D., 1951, The hardness of metal, Oxford Univ. Press.
- [2] Bhushan, B., 1999, Handbook of micro/nanotribology, 2nd ed., CRC Press, Boca Raton.
- [3] Tabor, D., 1996, Indentation hardness: fifty years on a personal view, *Philos. Mag. A*, 74, pp. 1207-21.
- [4] Sneddon, I.N., 1965, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci., 3, pp. 47-56.
- [5] Oliver, W.C., and Pharr, G.M., 1992, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, pp. 1564-83.
- [6] Nix, W.D., and Gao, H., Indentation size effects in crystalline: a few for strain gradient plasticy, J. Mech. Phys. Solids. 3, 46, p411~425, 1998.
- [7] Odegard G.M., Lai J.s., and Onaran K., 2005, Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation, Society for Experimental Mechanics, Vol. 45, No. 2.
- [8] Findley W.N., et al., 1989, Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover Publications, New York
- [9] Li, X., Diao, D., and Bhushan, B., 1997, Fracture mechanisms of thin amorphous carbon films in nanoindentation, *Acta Mater.* 45, pp. 4453-61.
- [10] Li, X., and Bhushan, B., 1998, Measurement of fracture toughness of ultra-thin amorphous carbon films, *Thin Solis Films* 315, pp. 214-21.
- [11] Li, X., and Bhushan, B., 1999, Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques, *Thin Solis Films* 355, pp. 330-6.