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Abstract 

Aims: To familiarize the researchers with complex mechanics and to pave the way for them to 

analyze quantum systems by using methods already developed in classical mechanics. 

Method: Quantum mechanics is an experimental science defined in the real world, but 

understanding the how and the why of quantum mechanics requires a viewpoint from the complex 

space. It may be said that quantum mechanics is intrinsically a complex-valued science. The 

complex space is where a quantum motion takes place, while the real space is where we take the 

measurement of the motion. Quantum mechanics lays out the distribution and the evolution of the 

measurement data, while the complex-valued mechanics introduced here describes the quantum 

motion in the complex space before it is measured. In the complex space, quantum motions are 

deterministic so that all the methods of classical mechanics can be applied. The projection of the 

complex-valued motion into the real space recovers and confirms the quantum phenomena observed 

from the measurement data. 

Results: The complex mechanics, a unified approach to classical and quantum mechanics, 

provides a bridge between the probabilistic interpretation in the real space and the deterministic 

interpretation in the complex space. Through this bridge, researchers in classical mechanics can 

employ methods familiar to them to analyze quantum systems in the complex space, and to predict 

and verify various quantum phenomena by projecting the results of analysis into the real space.  
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Introduction 

The lack of dynamic equations of motion with respect to time, which is one of the sources of 
controversies of quantum mechanics, makes it impossible to analyze stability, chaos, bifurcation, 
and many other nonlinear features existing in quantum systems. This impossibility has long been 
taken for granted due to a common belief that the probabilistic nature of quantum phenomena is in 
no way described or represented by deterministic nonlinear models. However, probabilistic 
viewpoint and deterministic viewpoint may not be as conflicting as we commonly think. Consider a 
scenario that a dynamic motion occurs in the complex space but only the real-part of the motion can 
be measured. Due to the influence of the unmeasurable imaginary-part motion and its interaction 
with the real-part motion, the measured real-part motion is uncertain and can only be described 
probabilistically. On the other hand, the same motion, if viewed from the complex space, is 
governed uniquely by a set of complex-valued nonlinear equations, which are totally deterministic. 
In such a situation, probabilistic interpretation and deterministic interpretation can be equally 
applied to the same motion, depending on which space we view from.  

In quantum mechanics, we encounter the same scenario that actual particle motions occur in 
the complex space, but what we sense and measure are merely the real parts of the motions as 
depicted in Fig. 1, which give rise to what we call quantum phenomena. The correctness of this 
scenario describing quantum world is easy to verify by solving the complex-valued nonlinear 
equations of motion, projecting the solutions into the real space and then comparing with the 
measurement data. In recent years, an excellent consistency of the projected solutions with the 
various quantum effects has been justified and reported under the framework of complex-valued 
mechanics [1,2]. The present paper aims to familiarize the researchers with complex mechanics to 
pave the way for them to analyze quantum systems by using methods already developed in classical 
mechanics. 

Complex-valued Quantum Dynamics:  

By extending canonical variables  to a complex domain, it can be shown [1] that the 
complex-valued  equation  
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where  is the intrinsic quantum potential defined by Q
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With the Hamiltonian given by Eq.(3), quantum Hamilton equations of motion in the quantum state 
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where the canonical momentum p  can be determined from the action function S  by the 
canonical transformation as 

( , ) i ln ( , ) nS t t= ∇ = − ∇ Ψ ∈p q q . (6) 

This expression for  is actually a complex extension of the Bohm’s guidance condition [3]. The 
complex momentum function  is a realization of the momentum operator  in the complex 
space according to the definition , which together with Eq.(4) gives an expression for the 
momentum operator as . Similarly, the quantum operator 
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observable  can be identified from its complex-space realization  via the relation Q ( , , )Q t q p

Ψ = ΨQ Q  [4]. For instance, the x  component  of the complex angular momentum 
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The combination of Eq.(5a) with Eq.(6) gives the complex equation of motion in the state 
 as ( , )tΨ q
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For a 1D stationary state with coordinate , a solution of the ’s equation 
can be expressed by  from which Eq.(9) reduces to 
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The related complex action function S  becomes , and the quantum 
Hamilton-Jacobi equation (2) then reads 
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This is an explicit energy conservation law in quantum mechanics, which manifests that the total 
energy in a quantum system comprises three terms: the kinetic energy , the external 
potential energy , and the intrinsic potential energy . With  
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given by Eq.(6), the energy conservation law (11) turns out to be the time-independent 
 equation Schrodinger
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The quantum potential Q  has an intimate relation to the probability interpretation of the 
standard quantum mechanics [5]. From the energy conservation law (11), we can express the total 
potential as 
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From Eqs.(5), a succinct expression for the quantum Newton second law becomes 
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Since this equation of motion is independent of the constant , we can choose  as the 
reference energy level for . The magnitude of the total potential now has the expression 
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which states that the magnitude of the total potential is inversely proportional to . A spatial 
point with large value of  corresponds to a location with law potential barrier and hence a 
large accessibility to this point. This fact legitimates the use of  as the probability measure for 
a particle to appear at a specified spatial point. 

ψ ψ∗

ψ ψ∗

ψ ψ∗

Chaos and Multiple Paths 

Chaotic behavior of a nonlinear system is featured by the high sensitivity of its phase-space 
trajectories to its initial conditions. Because the trajectory of a particle is not a well-defined quantity 
in quantum mechanics, the manifestations of chaotic motion in quantum mechanics remain a 
controversial issue. This difficulty can be conquered by employing the nonlinear quantum dynamics 
introduced above. For example, we consider a 1D quantum system with coordinate 

, whose equations of motion for the real and imaginary parts are given by Eq.(10) 
as 
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For a given initial position , a unique trajectory can be found from 
Eq.(16) on the complex plane. However, the uniqueness of trajectory on the complex plane does not 
imply the uniqueness of trajectory on the real axis, since different points on the complex plane may 
be projected into the same point on the real axis. By fixing the real-part initial position  
and letting  vary in , a set of complex trajectories can be determined from Eq.(16): 

(0) (0) i (0)R Ix x x= +

0(0)R Rx x=

(0)Ix
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The projection of  onto the real axis gives rise to a set of real trajectories,  Ω
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as if they were all originated from the same initial position . Since only the real part 
 can be measured, what we have observed are the trajectories in , which comprises an 

infinite number of real trajectories all emerging from the same initial position . This is 
just the multi-path phenomenon considered in Feynman’s fractal space-time approach to quantum 
mechanics [6,7]. Classical chaos analysis is to consider the sensitivity of  to the initial 
perturbation . One of the distinct features of quantum chaos is that even if the 
initial perturbation  is zero, the trajectory  still perturbs and diverges. We call this 
phenomenon “strong chaos” [8], because the chaos behavior is so severe that the trajectory diverges 
spontaneously without any perturbation in the initial position. All of such perturbed trajectories with 

 are caused by the unobservable  as shown schematically in Fig. 2. The analysis of 
strong chaos then amounts to considering the trajectory divergence in  due to the variation of 

. 
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Stability and Quantization 

Stability of quantum systems can be analyzed by extending the Lyapunov stability theory to a 
complex domain. Let  be an equilibrium point (fixed point) satisfying . Then we 
say that the quantum system (10) is Lyapunov stable at , if for every , there exists 

 such that  
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where 0 ex x−  denotes the magnitude of the complex number . The system (10) is further 
said to be asymptotically stable at  if it is Lyapunov stable, and  approaches  as 

. It can be shown [9] that the asymptotic convergence is ensured, if the derivative of  
at  satisfies 
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According to the value of , we can classify equilibrium points of a quantum 
system into several types: (1) a node with , ; (2) A center with , ; (3) a 
focus with , . It is interesting to find that saddle points do not appear as equilibrium 
points in a quantum system, but appear as singular points [9]. 
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In standard quantum mechanics, the quantization of  in a given quantum state  
is manifested via the expectation 
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Under the framework of complex-valued mechanics,  is a function of time with  and  ( , )f x p x p
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solved from Eq.(10). Hence, taking time average is preferable to the mean value of : ( , )f x p
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where  is the period of the trajectory . Via the relation (10), we can replace the time 
integration in Eq.(22) by a contour integration along the complex trajectory  denoted by c : 
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Quantization is just the phenomenon that 
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The time-averaged value 
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Bifurcation and Quantum Entanglement 

The term bifurcation is used to describe any sudden change in the dynamics of nonlinear 
systems, and the bifurcation theory is mainly concerned with the study of how the character of 
equilibrium points changes as parameters of a nonlinear system change. However, this concept of 
bifurcation cannot be conveyed directly to quantum mechanics, where it is impossible to talk about 
fixed points, trajectories, and even time. In quantum mechanics, people were forced to employ 
indirect methods, such as quantum entanglement, quantum phase transition, and quantum chaos, to 
explore bifurcation behavior in quantum world. On the contrary, the usage of nonlinear quantum 
dynamics developed in Section 2 allows us to analyze bifurcation from the conventional viewpoint. 
To illustrate how bifurcation emerges from quantum entanglement, we consider an entangled state 
for a “free” particle 

i 2 / i 2 /( ) ,    ,  0,  mEx mExx Ae Be A B xψ −= + ≠ ∈

0

. (26) 

Depending on the bifurcation parameter, , a free particle may move right or left, or 
merely oscillate between the two directions. To determine which case actually happens, we need the 

/A Bα = ≥

 6



velocity information of the particle, obtained by substituting Eq.(26) into Eq.(10): 
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where the dimensionless variables are defined as ( 2 / )x mE= x  and (2 / )t E= t . The 
integration of Eq.(27) gives the following simple result: 
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Bifurcation occurs at the critical value of  α

2 / 4α β= . (29) 

In the complex plane spanned by all the initial velocities 0 (0)  (0)R Ix x i x= + ∈ , the complex 
point 0x  satisfying the inequality (29) falls on the hyperbola: 

2 2(0) (0) 1/2R Ix x− = . (30) 

According to the given initial velocity, we now can categorize the free-particle motion in the 
entangled state into three branches: (1) 2(0) (0) 1/2R Ix x> +  represents a particle moving right 
without bound; (2) 2(0) (0) 1/2R Ix x≤ +  represents a particle oscillating within a bound 
interval, and (3) (0)Rx  2(0) 1/2Ix<− +  represents a particle moving left without bound. As a 
numerical verification, Fig. 3 illustrates the free-particle trajectories with the same initial position 

(0) 0x =  but different initial velocities 0 1 0.6x i= + 1 0.8i+, , and , relating to the 
above three branches of trajectory. 

1 0.6i− +

The multiple-path motion of a free particle passing a single slit is shown in Fig. 4. The incident 
particles have only horizontal velocity components when passing the center of the slit, i.e., assume 

(0) 1Rx =  and (0) 0Ry = . To see the effect of the imaginary part of the initial velocity, we change 
the value of (0)Iy  from  to i  with increment . The projected trajectories on the real i− 0.02i

Rx y− R  plane for each value of (0)Iy  are recorded in Fig. 4. Notice that the whole trajectories 
appear on the two-dimensional complex plane x y−  but what we can observe are their 
projections in the real plane Rx y− R . As is shown in Fig. 4, the entire particles incident upon the 
single slit  have the same initial velocity A (0) 1Rx =  and (0) 0Ry =  as viewed from the real 
plane but after passing the slit, they follow different paths to the point  due to the influence of 
the unobservable imaginary part of the initial velocities 

B

(0)Ix  and (0)Iy .  
At first glance, the fact, that particles with the same initial conditions and governed by the 

same equation of motion (27) follow different trajectories, cannot be allowed and explained by 
deterministic mechanics; but this is not true. The key point lies on the notion that what we mean the 
same initial condition actually stands for the same real part of the initial condition, while the 
imaginary part of the initial condition may be different. As viewed from the complex domain, 
particles passing  and B  all have different imaginary parts of velocity; but as viewed from the 
projected real space, it appears as the multi-path phenomenon that there are infinite many paths 
connecting  and B  all satisfying with the same initial and terminal conditions. 

A

A
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Conclusions 

The lack of well-defined concept of time, trajectories and dynamic equations has prohibited the 
use of nonlinear analysis from quantum mechanics for a long time. The complex-valued mechanics 
provides a bridge between the probabilistic interpretation in the real space and the deterministic 
interpretation in the complex space. Through this bridge, researchers in nonlinear science and 
classical mechanics can employ methods familiar to them to analyze quantum systems in the 
complex space, and to predict and verify various quantum phenomena by projecting the results of 
analysis into the real space. Table 1 summarizes the established correspondence between quantum 
mechanics and complex mechanics. 
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Table 1. The counterparts of quantum mechanics in complex mechanics 

 Elements in quantum 
mechanics Counterparts in complex mechanics 

1 Quantum operators Complex variables [1,4] 

2 Quantization Residue theory: Contour integration is independent of 
the shape of the contours [9,11]. 

3 Tunneling motion Classical motions with complex force and complex 
acceleration [11]. 

4 Orbital angular motion Angular motion in complex space [12]. 
5 Spin angular momentum Zero dynamics of orbital angular momentum [13]. 
6 Probability mean value Time-average mean value [14,9] 
7 Wave motions Interaction between real and imaginary motions [10] 
8 Atomic shell structures The structure of complex quantum potential [5] 
9 Probability flow Potential flow on the complex plane [15]. 
10 Probability density The magnitude of complex quantum potential [2,16]. 
11 Quantum chaos Chaos in complex-valued nonlinear systems [8]. 

12 Anti-particle and superluminal 
propagation Complex-valued spacetime [17] 

 
 
 



 

Fig. 1 Complex mechanics assumes that all physical quantities are complex-valued and only their 
real parts can be measured. The quantum phenomena manifesting in the real parts are caused by the 
influences from the imaginary parts. 
 
 
 
 

 
Fig. 2 The internal mechanism bringing forth multi-path behavior. (a) Infinitely many trajectories 

 are produced all with the fixed initial condition  via the interaction between the real 
dynamics and the imaginary mechanics by varying the value of . (b) A value of  
generates a specific trajectory . Due to the unobservability of the imaginary dynamics , 
all of such trajectories, when viewed from the real space, start from the same initial position . 

( )Rx t (0)Rx
(0)Ix (0)Ix

( )Rx t ( )Ix t
(0)Rx
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Fig. 3 Three types of trajectory for free particles with same initial position but different initial 
velocities. 
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Fig. 4 The multi-path behavior for a free particle passing a single slit with horizontal incident 
velocity 
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